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ABSTRACT

High-quality, high-resolution, hourly unbiased surface (2m) temperature analyses are needed for many

applications, including training and validation of statistical postprocessing applications. These temperature

analyses are often generated through data assimilation procedures, whereby a background short-range

gridded forecast is adjusted to newly available observations. Even with frequent updates to newly available

observations, surface-temperature analysis errors and biases can be comparatively large relative to errors and

biases of midtropospheric variables, especially over land, despite more near-surface in situ observations.

Larger near-surface errors may have several causes, including biased background forecasts and the spatial

heterogeneity of surface temperatures that results from subgrid-scale surface, vegetation, land-use, and ter-

rain variations. Are biased raw background forecasts the predominant cause of surface temperature analysis

errors? Part I of this two-part series describes a simple benchmark for evaluating the error characteristics of

short-term (1 h) rawmodel background surface temperature forecasts. For stations with a relatively complete

time series of data, it is possible to generate an hourly, diurnally, and seasonally dependent observation

climatology at a station. The deviation of the current hour’s temperature observation with respect to this

hour’s and Julian day’s climatology is added to the climatology for the next hour. For contiguous U.S. stations

in July 2015, the station benchmark was lower in error than interpolated 1-h high-resolution numerical

predictions of surface temperature fromNOAA’sHigh-ResolutionRapidRefresh (HRRR) system, although

not including full postprocessing. For August 2018, 1-h HRRR forecasts were much improved when tested

against the station benchmark.

1. Introduction

Many weather and climate applications require high-

quality hourly surface (2m) real-time temperature

analyses and retrospective analyses (reanalyses). For

example, an accurate retrospective time series of sur-

face temperature analyses on a high-resolution grid

may be used to provide the analyzed training data for

the statistical postprocessing of surface temperature

forecasts, such as in Flowerdew (2014). Other appli-

cations include accurate model initialization, the diag-

nosis of climate and weather variations and trends, the

validation of surface-temperature forecasts from nu-

merical weather prediction guidance, and situational

awareness of current conditions. Users seek analyses

with low error and bias as well as realistic spatial and

temporal detail, including smaller diurnal tempera-

ture ranges near water bodies and elevation-dependent

and terrain slope-dependent temperature variability in

mountainous regions. If the analyses are biased, have

large errors, or have insufficient spatial and temporal

detail, they may be unsuitable for these applications. The

U.S. National Oceanic and Atmospheric Administration

(NOAA) maintains a system that produces such hourly

‘‘analyses of record:’’ the Real-Time Mesoscale Analysis

(RTMA) system of de Pondeca et al. (2011).

How accurate and unbiased are the current hourly

surface temperature analyses? Commonly these ana-

lyses are generated with data assimilation algorithms,

whereby a first-guess ‘‘background’’ forecast is adjusted

to newly available observations. Data assimilation

algorithms commonly are formulated under the as-

sumption that the background forecasts are unbiased

(e.g., Daley 1991, chapter 4). This assumption should

be checked rather than taken as a given. For example,

significant systematic analysis increments (analysis minus

background) were identified in the raw NOAA High-

ResolutionRapidRefresh (HRRR;Benjamin et al. 2016)

short-range surface temperature forecasts during July

2015 that are used in the generation of the backgroundCorresponding author: Dr. ThomasM.Hamill, tom.hamill@noaa.gov
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forecasts for the RTMAanalysis procedure. TheHRRR

is a fully nonhydrostatic forecast modeling system that

utilizes a modern land surface model (LSM) for esti-

mating surface-energy fluxes and diagnosing surface

temperature. Time-averaged analysis increments (anal-

ysis minus forecast) for 0000 UTC during July 2015 and

August 2018 are shown in Figs. 1a and 1b, respectively.

Warm biases are evident in much of the eastern and

central United States during July 2015. Raw background

biases were substantially reduced by August 2018, pri-

marily as a result of more recent model and assimilation

changes outlined in Benjamin et al. (2016, their Table 8).

Of course, biased raw surface-temperature background

forecasts are not unique to the HRRR system; they can

be observed in practically all data assimilation systems.

While systematic discrepancies between surface tem-

perature observations and raw model forecasts at par-

ticular stations may be attributable in part to differences

in grid elevation between the model grid and the ob-

servation, there are other causes that may relate to

underlying model imperfections. If there are system-

atic errors in ground-heat flux or the soil-water budget,

perhaps due to a mis-estimation of precipitation, soil

moisture, or soil texture or a deficiency in the land sur-

face model, these may accumulate in the absence of a

corrective soil-state data assimilation procedure. The

biased soil temperature states may in turn result in bi-

ased estimates of fluxes of thermal energy and moisture

between the ground and the air above it, affecting sur-

face temperature. There may also be prediction system

issues that are traced back to model deficiencies above

the ground surface. Perhaps surface downward solar

radiation is systematically misestimated because of

an inappropriate forecast of cloud cover and optical

depth, or perhaps there are systematic errors in the

surface-layer or boundary layer physical parameteriza-

tions that result in misestimations of vertical mixing.

Could bias in the raw background state be removed

prior to the assimilation step? With regards to differ-

ences that originate from fixed differences between the

station and the grid elevation, the RTMA as well as the

fully cycled HRRR data assimilation procedures incor-

porate adjustments to the raw model background for

differences in elevation. The assimilation procedures

for these two systems are shown in Fig. 2. In the RTMA,

lapse rates from the HRRR forecast are used in con-

junction with differences between the finer-scale RTMA

grid resolution and the coarser HRRR grid resolution

to define a modified background state consistent with

the RTMA grid elevation (de Pondeca et al. 2011). This

vertical downscaling is describedmore in Benjamin et al.

(2007) and is also similar to that described by Huld and

Pascua (2015). In grid cells with fractional water coverage,

there is also a procedure for choosing the background

state at an adjacent grid point if the observation minus

background is smaller at that point. The production of

2-m temperature analyses in the cycled HRRR 3D

data assimilation for model initialization is slightly

different, in that all observations, surface and other,

are assimilated. Adjustment for elevation differences

are performed using differences between the HRRR

model grid and the observation elevation (Benjamin

et al. 2016, their section 2a).

There is also literature that discusses the more ge-

neric problem of larger-scale biases in raw background

forecasts and possible corrective approaches (e.g., Dee

and Da Silva 1998; Dee 2005; Baek et al. 2006; Lei and

Hacker 2015; Lorente-Plazas and Hacker 2017). Still,

removing background bias is especially challenging for

FIG. 1. Illustration of potential systematic errors in 1-h HRRR

forecasts and their change from 2015 to 2018.Mean analysis increments

(analysis minus forecast) over CONUS are shown for the 1-h forecasts

ending at 0000 UTC during (a) July 2015 and (b) August 2018.
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surface temperature given its spatial heterogeneity.

Whereas one might pool samples of, say, stratospheric

temperatures across many locations to increase the

sample size for bias estimation, this may be counter-

productive with surface temperatures.

It would be helpful to understand whether raw model

background surface-temperature biases in rapidly updated

surface data assimilations are a minor nuisance or a

major problem, in this case before HRRR adjustments.

Best et al. (2015, hereinafter B15) discussed the use of

benchmarks to provide baseline performance expecta-

tions for a system; the benchmark might be a previous

model version or a simple statistical model. In B15, the

hypothesis was that sophisticated land surface models

would be able to provide more accurate forecasts of

sensible and latent heat fluxes when compared to sim-

ple statistical-model benchmarks. Fluxes were bench-

marked at a range of sites with high-quality observed

data (e.g., time series of surface temperature and hu-

midity, insolation, and soil temperature and moisture).

The hypothesis was not confirmed; surface sensible

and latent-heat flux estimates from LSMs were gener-

ally less accurate than a statistical benchmark based on

3 simple predictors, the surface temperature, relative

humidity, and downward solar-radiation at the surface.

As surface temperature is strongly related to the par-

titioning of fluxes at the earth’s surface, this motivated

the development of a simple statistical benchmark of

surface temperature to compare with 1-h forecasts from a

sophisticated prediction system. Given the results of B15,

the hypothesis to be tested that a station-based statistical

1-h forecast of surface temperature, hereinafter called

the ‘‘station benchmark’’ will provide a challenging

reference standard for short-range surface temperature

raw forecasts from a high-resolution numerical model.

This article is inspired by B15 and is the first of a two-

part series. This first part discusses the development of

the station benchmark for raw numerical HRRR back-

ground forecasts of surface temperature for the contigu-

ous United States (CONUS). Evaluation of raw HRRR

model data is a chosen simplification that neglects eval-

uation that includes the temperature adjustments for

elevation in the RTMA and the HRRR. Arguably the

simplified data processing does illuminate the under-

lying error characteristic of the raw model guidance.

The article intends both to further demonstrate the rel-

evance of benchmarking and to demonstrate the sub-

stantial challenges in developing numerical weather

prediction capable of ameliorating short-term fore-

cast bias. As an ancillary research result, the article

will demonstrate the utility of a careful definition of a

diurnally dependent climatology.

Admittedly, the evaluation of raw gridded model

guidance relative to a station benchmark may be mis-

leading. The observation site for a station benchmark

may reflect conditions unique to that particular loca-

tion rather than the surrounding gridbox mean that the

prediction system represents. Still, if a station bench-

mark does not set a competitive standard for the model

guidance, then one would not expect a statistically gen-

erated and rigorously cross-validated gridded benchmark

to be competitive with model guidance. As we will see,

FIG. 2. Schematic of the assimilation procedures for the (a) RTMA and (b) HRRR systems. The RTMA system is not cycled; i.e., the

analyses are not used to initialize the subsequent forecast. Elevation adjustments are made between HRRR and RTMA grids to the

background forecast in the RTMA analysis procedure and between HRRR and station elevations in the HRRR analysis procedure.
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the station benchmark does provide a competitive refer-

ence standard, which motivates further development of

the gridded benchmark discussed in the second part of this

series, Hamill and Scheuerer (2020, hereinafter Part II).

The remainder of this first article is organized as follows.

Section 2 describes the data used in this experiment and

the methods for evaluation of the raw forecast and

station benchmark. Section 3 describes the numerical

procedure used to generate the station benchmark.

Sections 4a and 4b provide results with regard to the

verification of the benchmarks, and section 5 provides

a discussion and conclusions.

2. Data and evaluation methods used in this
experiment

The observation dataset used in this experiment was

the National Center for Atmospheric Research data-

set 472.0, an archive of quality-controlled hourly sur-

face observations over North America. Data were

originally synthesized and quality controlled at the U.S.

NationalWeather ServiceMeteorological Development

Laboratory. These data are available online (https://

rda.ucar.edu/datasets/ds472.0/). Surface temperatures

were used for the period 0000 UTC 1 January 2004–

2300 UTC 28 February 2019. The author chose to

further limit use of surface temperatures in this data-

set to only those observation sites for which data were

available at 97% or more of the hours, days, and years

in the analysis period. This observation availability

cutoff was made based on the importance of an accu-

rate estimation of the climatology to this procedure.

With this availability criterion, 1118 station locations

were available in the area of study, the CONUS.

When comparing the benchmarking procedure with

numerical forecasts, for the July 2015 data, 1-h forecasts

of background surface temperatures were extracted

from version 1 of the operational High Resolution

Rapid Refresh (HRRR) limited-area prediction system

described in Benjamin et al. (2016). The raw forecast

value at the ;3-km2 grid box nearest the station was

used, a simplification of the process described in Fig. 2.

For the 2018 data, the operational version-3HRRR

predictions were extracted. The HRRR system gener-

ates hourly analyses and numerical forecast guidance

to 115-h lead time. It is used for many applications at

the National Weather Service (NWS), including severe

weather prediction, short-term precipitation prediction,

and aviation applications. The underlying prediction

system is theWeather Research and Forecasting (WRF)

Advanced ResearchWRF (ARW), with a 3D-ensemble-

variational data assimilation system. See Benjamin et al.

(2016) formore details. Comparative validation of station

benchmark andHRRR forecasts was limited to July 2015

and August 2018—a limitation of this study.

July 2015 HRRR forecasts were sometimes unavai-

lable—in particular, 1-h forecasts initialized on the

date/times (all UTC) 1500 1 July, 1000 2 July, 0500 and

1400 3 July, 1400 5 July, 1200 and 2100 6 July, 0800 8 July,

0300 10 July, 0800 and 1600 11 July, 1400 and 2100

18 July, 1300 22 July, 1100 23 July, 1300 UTC 26 July,

and 2100 UTC 28 July. This set represents 17 of the 744

analysis times, or approximately 2.3%. The validation of

both the HRRR and the station benchmark did not

include these data. No data were missing in 2018.

Standard methods of evaluation of deterministic

forecasts were used, including root-mean-square error

(RMSE), mean absolute error (MAE), and bias, all

following standard definitions in Wilks (2011). 5th- and

95th-percentile confidence intervals of a distribution

consistent with the null hypothesis of no differences are

provided on the comparative plot of errors from the two

systems, recentered on the benchmark forecast errors.

The confidence intervals were determined through a

paired block bootstrap algorithm following Hamill (1999),

assuming error statistics were independent from one

day to the next (Hamill 1999).

3. Methods used in the generation of the statistical
benchmark

To determine a current hour’s deviation from clima-

tology at a particular station, an accurate estimate of

that climatology is needed. In this application, the cli-

matology was estimated to be a function of the hour of

the day (which permitted diurnal dependence) and of

the Julian day of the year (which permitted seasonal

dependence). With such estimates, it was straightforward

to generate the station benchmark for 1-h dynamical

surface-temperature forecasts; the current hour’s ob-

served anomaly with respect to that hour’s climatology

was determined. This anomaly was added to the next

hour’s climatology to generate the 1-h station benchmark.

Figures 3 and 4 illustrate the procedure for generating

the seasonally and diurnally dependent temperature

climatology for a particular station, in this case the air-

port at Albany, New York (KALB). Figure 3 shows the

0000 UTC observations at KALB (dots) as a function

of the Julian day. Plotted over the top of these is a

cubic-spline fit estimate (Press et al. 1992, section 3.3)

of the mean temperature as a function of the Julian

day. To generate this curve, data were repeated below

Julian day 1 and after Julian day 365, and the cubic-

spline procedure was applied using eight knots equally

spaced through the calendar year. The choice of eight

knots was based on trial and error for what appeared
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to provide a reasonable, smooth fit to the data.

Figure 4 next shows the cubic-spline-fitted yearly

climatologies at KALB every third hour over the diur-

nal cycle. The diurnal temperature range was smallest

in the boreal midwinter and largest in midsummer.

Minimum temperatures were most commonly closer to

1200 UTC in midwinter, but with the earlier sunrise

were nearer to 0900 UTC during the summer. These

climatologies were generated for each of the 1118

CONUS stations and for every hour of the day, cross

validated, so that when a data analysis was performed

for 2004 the climatology was defined with the 2005–

19 data. Possible systematic changes in climate from

anthropogenic global warming were not considered in

the definition of the climatology.

With the climatology defined, it was straightforward

to evaluate the potential validity of this persistence of

the deviation from climatology as a station benchmark.

Figure 5 provides scatterplots of this station tempera-

ture anomaly relative to the temperature anomaly in the

previous hour for eight chosen hours through the diurnal

cycle, again for July at KALB. There were uniformly

large 1-h-lag Pearson correlations of the anomalies at

all hours, modest RMS differences on the order of 18C,
and an evident lack of bias. The procedure for gener-

ating the station benchmark appears to be rigorous

across the diurnal cycle for this station. Although not

shown, these general characteristics were confirmed

when the analysis was repeated at other stations and

other times of the year.

Figure 6 illustrates both the procedure for generat-

ing these deviations from climatology. Figure 6a shows

both the hourly and Julian day-dependent climatology

(thick blue line) and the hourly time series of obser-

vations (red line) for 1–15 July 2015. The observed

deviations from the climatology are plotted in Fig. 6b.

Deviations exhibited a modest autocorrelation, which

may be due to synoptic-scale variability on a time scale

of a week and the persistence from one hour to the next

of environmental conditions that affect surface tem-

perature such as cloudiness or soil-moisture and soil-

temperature anomalies.

Given the autocorrelations, a more complicated bench-

mark was developed with linear-regression corrections

to the persistence of the anomaly. Predictors included

the relative humidity and temperature trends above the

surface from a forecast model. This further decreased

the error of the station benchmark by approximately

5%–10%. However, this more complicated model was

not used as a benchmark–the focus hereinafter is on

the simplest of procedures, direct persistence of the

anomaly from climatology.

4. Results

a. Verification of the benchmark for 2004–19

Before comparing the benchmark with the HRRR

data, a figure is provided to illustrate that the bench-

mark has modest error and bias when validated at many

different stations in different climatological regimes

and when validated over yearly and diurnal cycles.

Figure 7 shows that CONUS-averaged benchmark

RMSE, MAE, and bias were all modest over the yearly

and diurnal cycles. Errors tended to be largest during

the time of maximum heating, which was later in the

day during the wintertime. It is during the period of

maximum heating when the accuracy of the partition-

ing of the downward solar and thermal energy into

surface sensible heating, latent heating, and ground

heat flux has the most consequence. If the partitioning

is misestimated, perhaps as a result of errors in the

analysis of soil moisture or the forecast of cloud cover,

then the rate of warming will in turn be misestimated.

FIG. 3. Illustration of the cubic-spline fitting procedure to de-

termine a climatology for a particular hour of the day for KALB.

Surface temperatures (dots) are shown for the period from

0000 UTC 1 Jan 2004 to 2300 UTC 28 Feb 2019. The fitted spline-

curve estimate of the climatology for this period is shown with the

red curve, estimated as a function of Julian day. To aid clarity of

presentation, only every fifth sample from the time series was plotted.

FIG. 4. Spline-fitted estimates of the climatology at KALB for

every 3 h over the diurnal cycle and throughout the year.
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Another characteristic shown in Fig. 6c is that the bias

is consistently near zero for all months and for all hours

across the diurnal cycle.

b. Verification of HRRR 1-h surface temperature
forecasts against the benchmark

Figure 8 synthesizes the comparative verification of

the HRRR forecasts with the station benchmark during

July 2015 (Figs. 8a,c,e) and August 2018 (Figs. 8b,d,f).

During July 2015, the station benchmark was statisti-

cally significantly lower in RMSE and MAE, roughly

slightly less than a factor of two over the diurnal cycle.

The station-based benchmark was unbiased, while the

HRRR system was commonly too warm during the

daytime hours. This result was consistent with the av-

eraged analysis increments from cycled data assimila-

tion previously shown in Fig. 1. August 2018 benchmark

errors were very similar to July 2015 benchmark errors,

but the August 2018 HRRR errors were notably re-

duced relative to the July 2015 values. Benjamin et al.

(2016; Fig. 11) shows similar error and bias reductions

in 12-h forecasts.

Figure 9 provides a plot of RMSE errors at each sta-

tion location. Again, note that the August 2018 HRRR

RMSEs (Fig. 9b) were notably reduced relative to those

in July 2015 (Fig. 9a). The July 2015 HRRR errors were

largest in the upper Great Plains and at selected lo-

cations in the mountainous western United States.

Figures 8c,d provide the respective maps of station

benchmark RMSEs, which are generally uniformly

low, though with a few scattered points in the Rocky

Mountains with higher errors.

Figure 10 presents spatial maps of HRRR and sta-

tion benchmark biases for the two summer months.

The station benchmark biases are generally lower, and

the HRRR bias is markedly reduced in August 2018

relative to its July 2015 values. Note that the pattern of

July 2015 HRRR bias strongly resembles the time-

mean analysis increment shown in Fig. 1a. Figure 11

provides a scatterplot of the station benchmark RMSE

(Fig. 11a) and bias (Fig. 11c) against the HRRR at

0000 UTC in July 2015 and August 2018 (Figs. 11b

and 11d). Again, the majority of station benchmark

forecasts were lower in error for July 2015, though the

proportion of benchmark RMSEs that were lower

were reduced in August 2018. It is possible that if

the plot were generated utilizing HRRR background

forecasts after their output grid elevation correction,

the HRRR errors would be reduced. Station bench-

mark biases averaged to near zero and were mostly

confined between 218 and 18C. HRRR forecasts in

July 2015 were much more commonly too warm than

too cold, although the HRRR biases were notably

reduced in August 2018. Overall, the results of the

station benchmark provide enough evidence to con-

firm the original hypothesis, that a reasonable statis-

tical benchmark is capable of improving upon raw

dynamical short-term forecasts of surface temperature

FIG. 5. Scatterplots of deviation T0 from climatology at station KALB for a particular hour of the day (ordinate) vs the deviation for the

previous hour (abscissa). Data are collected for dates in July from 2004 to 2018. Here, (a)–(h) show the relationships every 3 h over the

diurnal cycle.
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without postprocessing, although of course the station

benchmark omits errors of representativeness.

5. Discussion and conclusions

In this article a simple procedure was developed to

produce a benchmark for the evaluation of 1-h forecasts

of surface temperature from a numerical weather pre-

diction system. Such forecasts are commonly used as the

background in hourly ‘‘rapid update’’ data assimilation.

The procedure began with the development of a clima-

tology for the station that varied with the Julian day and

hour of the day. Observed deviations from the current

hour’s climatology were added to the next hour’s cli-

matology to produce the 1-h forecast station benchmark.

This procedure was used during July 2015 and August

2018 to benchmark raw 1-h forecasts from the HRRR

system. The HRRR data used here did not include the

postprocessing used in theRTMA system that includes a

vertical interpolation to elevation differences between

the HRRR and the RTMA grid. The station benchmark

had statistically significantly lower errors and biases

than the raw HRRR background forecasts, though

the forecasts showed a notable improvement from 2015

to 2018. An admitted limitation of the study was that

FIG. 6. Illustration of the process for development of the hourly

benchmark: (a) hourly time series of surface temperature and the

surface temperature climatology at KALB and (b) deviations of

the hourly surface temperature from its climatology. The 1-h

lagged Pearson autocorrelation is also indicated in (b) for the

data. The vertical rules of the background grid represent 0000 UTC

each day.

FIG. 7. (a) Root-mean-square error, (b)mean absolute error, and

(c) bias for 1-h surface-temperature forecasts from the station

benchmark for stations in the CONUS. The data span 1 Jan 2004–

28 Feb 2019. Errors were plotted as a function of the month of the

year (abscissa) and the initialization time for the 1-h forecast

(ordinate).
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cool-season forecasts were not evaluated; this would

be rational to examine in future research.

The use of a station-based benchmark of a numerical

weather prediction is of course problematic for the rea-

sons discussed earlier. The model by design estimates a

gridbox-averaged value, and its initialization incorporates

the effect of other nearby observations. A more real-

istic benchmark would thus be a gridded statistical

benchmark, ideally one where the validation of a 1-h

forecast at a station location did not use the information

from that station during the previous hour. That is pre-

ciselywhat part 2 of this articlewill construct and evaluate.

Despite the reservations about the validation against

station data, this simple benchmark of surface tem-

peratures, like the B15 benchmark of surface fluxes, is

thought provoking, especially for model development

groups. The perceived advantage of using a numerical

weather prediction system in forecasting future states is

of course its ability to predict changes in air masses and

associated weather conditions, demonstrated in innu-

merable studies. The station-based results suggest that

the advantages in predicting very short-term changes in

weather conditions is counteracted to some extent by the

substantial numerical challenges involved in successfully

FIG. 8. The 1-h surface temperature forecast-error statistics for CONUSHRRR forecasts interpolated to stations

and for the station benchmark at those stations: (a) root-mean-square error for July 2015, (b) RMSE for August

2018, (c) mean absolute error for July 2015, (d)MAE for August 2018, (e) bias for July 2015, and (f) bias for August

2018. Error bars are recentered around the station benchmark and represent the 5th and 95th percentiles from a

paired block bootstrap distribution consistent with the null hypothesis of no differences in mean.
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analyzing and predicting the diurnal evolution of the

surface state. These challenges include vertical interpo-

lation and potential systematic errors in the atmospheric

forecasts of solar radiation or mixing of winds near the

ground. They may also include biased initial estimates

of the soil state (temperature, moisture, or snow cover)

and a suboptimal representation of the physical pro-

cesses that govern the interaction of the land with the

atmosphere. It remains to be seen if the lower error

and bias in the station benchmark is preserved in a

more apples-to-apples comparison of the raw HRRR

background with a gridded benchmark.

The reader is nowdirected toPart II, which discusses the

development of a statistical procedure for generating a 1-h

gridded forecast of surface temperatures over land and

the comparative evaluation of these temperatures rela-

tive to the HRRR guidance and then discusses the im-

plications of the results from the two articles.
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